Definition:Integral Transform/Kernel
< Definition:Integral Transform(Redirected from Definition:Kernel of Integral Transform)
Jump to navigation
Jump to search
This page is about Kernel of Integral Transform. For other uses, see Kernel.
Definition
Let $\map F p$ be an integral transform:
- $\map F p = \ds \int_a^b \map f x \map K {p, x} \rd x$
The function $\map K {p, x}$ is the kernel of $\map F p$.
Sources
- 1968: Peter D. Robinson: Fourier and Laplace Transforms ... (previous) ... (next): $\S 1.1$. The Idea of an Integral Transform