Definition:Kuratowski Closure Operator

From ProofWiki
Jump to navigation Jump to search

Definition

Definition 1

Let $S$ be a set.

Let $\cl: \powerset S \to \powerset S$ be a mapping from the power set of $S$ to itself.

Then $\cl$ is a Kuratowski closure operator if and only if it satisfies the following Kuratowski closure axioms for all $A, B \subseteq S$:

\((1)\)   $:$   \(\displaystyle A \subseteq \map \cl A \)             $\cl$ is inflationary
\((2)\)   $:$   \(\displaystyle \map \cl {\map \cl A} = \map \cl A \)             $\cl$ is idempotent
\((3)\)   $:$   \(\displaystyle \map \cl {A \cup B} = \map \cl A \cup \map \cl B \)             $\cl$ preserves binary unions
\((4)\)   $:$   \(\displaystyle \map \cl \O = \O \)             


Definition 2

Let $S$ be a set.

Let $\cl: \powerset S \to \powerset S$ be a mapping from the power set of $S$ to itself.

Then $\cl$ is a Kuratowski closure operator if and only if it satisfies the following axioms for all $A, B \subseteq X$:

\((1)\)   $:$   $\cl$ is a closure operator             
\((2)\)   $:$   $\map \cl {A \cup B} = \map \cl A \cup \map \cl B$             $\cl$ preserves binary unions
\((3)\)   $:$   $\map \cl \O = \O$             


Also see


Source of Name

This entry was named for Kazimierz Kuratowski.