Definition:Language of Propositional Logic/Basson-O'Connor
Contents
Definition
There are many formal languages expressing propositional logic.
The formal language used on $\mathsf{Pr} \infty \mathsf{fWiki}$ is defined on Definition:Language of Propositional Logic.
This page defines the formal language $\mathcal L_0$ used in:
Explanations are omitted as this is intended for reference use only.
Alphabet
Letters
The letters used are a non-empty set of symbols $\mathcal P_0$.
See the $\mathsf{Pr} \infty \mathsf{fWiki}$ definition.
Signs
Brackets
The brackets used are round brackets:
\(\displaystyle \bullet \ \ \) | \(\displaystyle (\) | \(:\) | \(\displaystyle \)the left bracket sign\(\) | ||||||||||
\(\displaystyle \bullet \ \ \) | \(\displaystyle )\) | \(:\) | \(\displaystyle \)the right bracket sign\(\) |
See the $\mathsf{Pr} \infty \mathsf{fWiki}$ definition.
Connectives
The following connectives are used:
\(\displaystyle \bullet \ \ \) | \(\displaystyle .\) | \(:\) | \(\displaystyle \)the conjunction sign\(\) | ||||||||||
\(\displaystyle \bullet \ \ \) | \(\displaystyle \lor\) | \(:\) | \(\displaystyle \)the disjunction sign\(\) | ||||||||||
\(\displaystyle \bullet \ \ \) | \(\displaystyle \supset\) | \(:\) | \(\displaystyle \)the conditional sign\(\) | ||||||||||
\(\displaystyle \bullet \ \ \) | \(\displaystyle \equiv\) | \(:\) | \(\displaystyle \)the biconditional sign\(\) | ||||||||||
\(\displaystyle \bullet \ \ \) | \(\displaystyle \sim\) | \(:\) | \(\displaystyle \)the negation sign\(\) |
See the $\mathsf{Pr} \infty \mathsf{fWiki}$ definition.
Collation System
The collation system used is that of words and concatenation.
See the $\mathsf{Pr} \infty \mathsf{fWiki}$ definition.
Formal Grammar
The following bottom-up formal grammar is used.
Let $\mathcal P_0$ be the vocabulary of $\mathcal L_0$.
Let $Op = \left\{{., \lor, \supset, \equiv}\right\}$.
The rules are:
$\mathbf W: \mathcal P_0$ | $:$ | If $p \in \mathcal P_0$, then $p$ is a WFF. | |
$\mathbf W: \neg$ | $:$ | If $\mathbf A$ is a WFF, then $\sim \mathbf A$ is a WFF. | |
$\mathbf W: Op$ | $:$ | If $\mathbf A$ and $\mathbf B$ are WFFs and $\circ \in Op$, then $\left[{\mathbf A \circ \mathbf B}\right]$ is a WFF. |
See the $\mathsf{Pr} \infty \mathsf{fWiki}$ definition.
Also see
Sources
- 1959: A.H. Basson and D.J. O'Connor: Introduction to Symbolic Logic (3rd ed.) ... (previous) ... (next): $\S 4.2$: The Construction of an Axiom System