# Definition:Left Adjoint Functor

Jump to navigation
Jump to search

## Definition

Let $\mathbf C$, $\mathbf D$ be locally small categories.

Let $F : \mathbf D \to \mathbf C$ and $G : \mathbf C \to \mathbf D$ be functors.

$F$ is a **left adjoint functor** of $G$, if there exists an adjunction $(F,G,\alpha)$.