Definition:Letter L

From ProofWiki
Jump to navigation Jump to search

Definition

The letter $\mathsf L$ is the topological subspace of the real number plane $\R^2$ under the Euclidean topology defined as:

$\mathsf L := \paren {\closedint 0 1 \times \set 0} \cup \paren {\set 0 \times \closedint 0 1}$


Letter-L.png


Also see

  • Results about letter $\mathsf L$ can be found here.


Sources