Definition:Little-Omega

From ProofWiki
Jump to navigation Jump to search

Definition

Let $f$ and $g$ be real functions.


Then:

$f \left({n}\right) \in \omega \left({g \left({n}\right)}\right)$

is equivalent to:

$\displaystyle \lim_{n \to \infty} {\frac{f \left({n}\right)} {g \left({n}\right)}} = \infty$


A function $f$ is $\omega \left({g}\right)$ iff $f$ is not $\mathcal O \left({g}\right)$ where $\mathcal O$ is the big-O notation.


Also see