Definition:Matroid/Definition 3

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M = \struct {S, \mathscr I}$ be an independence system.


$M$ is called a matroid on $S$ if and only if $M$ also satisfies:

\((\text I 3)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists Z \subseteq U \setminus V : \paren {V \cup Z \in \mathscr I} \land \paren {\size {V \cup Z} = \size U} \)      


Matroid Axioms

The properties of a matroid are as follows.

For a given matroid $M = \struct {S, \mathscr I}$ these statements hold true:

\((\text I 1)\)   $:$   \(\ds \O \in \mathscr I \)      
\((\text I 2)\)   $:$     \(\ds \forall X \in \mathscr I: \forall Y \subseteq S:\) \(\ds Y \subseteq X \implies Y \in \mathscr I \)      
\((\text I 5)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists Z \subseteq U \setminus V : \paren{V \cup Z \in \mathscr I} \land \paren{\size{V \cup Z} = \size U} \)