Definition:Maximal/Ordered Set/Definition 2

From ProofWiki
Jump to navigation Jump to search


Let $\left({S, \preceq}\right)$ be an ordered set.

Let $T \subseteq S$ be a subset of $S$.

An element $x \in T$ is a maximal element of $T$ if and only if:

$\neg \exists y \in T: x \prec y$

where $x \prec y$ denotes that $x \preceq y \land x \ne y$.

That is, if and only if $x$ has no strict successor.

Also see