Definition:Maximal Spectrum of Ring

From ProofWiki
Jump to: navigation, search


Let $A$ be a commutative ring with unity.

The maximal spectrum of $A$ is the set of maximal ideals of $A$:

$\operatorname{Max}\:\operatorname{Spec} \left({A}\right) = \left\{{\mathfrak m \lhd A : \mathfrak m \text{ is maximal}}\right\}$

where $I \lhd A$ indicates that $I$ is an ideal of $A$.

The notation $\operatorname{Max}\:\operatorname{Spec} \left({A}\right)$ is also a shorthand for the locally ringed space

$(\operatorname{Max}\:\operatorname{Spec} \left({A}\right), \tau, \mathcal O_{\operatorname{MaxSpec}(A)})$


$\tau$ is the Zariski topology on $\operatorname{MaxSpec}(A)$
$\mathcal O_{\operatorname{MaxSpec}(A)}$ is the structure sheaf of $\operatorname{MaxSpec}(A)$

Also denoted as

The maximal spectrum of $A$ can also be denoted $\operatorname{max}(A)$.

Also see