Definition:Maximal Spectrum of Ring

From ProofWiki
Jump to: navigation, search

Definition

Let $A$ be a commutative ring with unity.


The maximal spectrum of $A$ is the set of maximal ideals of $A$:

$\operatorname{Max} \: \Spec A = \set {\mathfrak m \lhd A : \mathfrak m \text { is maximal} }$

where $I \lhd A$ indicates that $I$ is an ideal of $A$.


The notation $\operatorname {Max} \: \Spec A$ is also a shorthand for the locally ringed space

$\struct {\operatorname {Max} \: \Spec A, \tau, \mathcal O_{\map {\operatorname {Max Spec} } A} }$

where:

$\tau$ is the Zariski topology on $\map {\operatorname {Max Spec} } A$
$\mathcal O_{\map {\operatorname {Max Spec} } A}$ is the structure sheaf of $\map {\operatorname {Max Spec} } A$


Also denoted as

The maximal spectrum of $A$ can also be denoted $\map {\max} A$.


Also see