Definition:Maximum/Functional

From ProofWiki
Jump to navigation Jump to search

Definition

Let $S$ be a set of mappings.

Let $y,\hat y\in S:\R\to\R$ be real functions.

Let $J\sqbrk y:S\to\R $ be a functional.

Let $J$ have a (relative) extremum for $y=\hat y$.

Suppose, $J\sqbrk y-J\sqbrk{\hat y}\le 0$ in the neighbourhood of $y=\hat y$.


Then this extremum is called the maximum of the functional $J$.

Sources