Definition:Minimal/Relation

From ProofWiki
Jump to: navigation, search

Definition

Let $\left({S, \mathcal R}\right)$ be a relational structure.

Let $T \subseteq S$ be a subset of $S$.

An element $x \in T$ is an $\mathcal R$-minimal element of $T$ if and only if:

$\forall y \in T: y \not \mathrel {\mathcal R} x$


Also see