# Definition:Minimally Inductive Class under General Mapping/Definition 3

Jump to navigation
Jump to search

## Definition

Let $A$ be a class.

Let $g: A \to A$ be a mapping on $A$.

$A$ is **minimally inductive under $g$** if and only if $A$ is minimally closed under $g$ with respect to $\O$.

## Also see

- Results about
**minimally inductive classes**can be found here.