Definition:Modulo Addition

From ProofWiki
Jump to navigation Jump to search

Definition

Definition 1

Let $m \in \Z$ be an integer.

Let $\Z_m$ be the set of integers modulo $m$:

$\Z_m = \set {\eqclass 0 m, \eqclass 1 m, \ldots, \eqclass {m - 1} m}$

where $\eqclass x m$ is the residue class of $x$ modulo $m$.


The operation of addition modulo $m$ is defined on $\Z_m$ as:

$\eqclass a m +_m \eqclass b m = \eqclass {a + b} m$


Definition 2

Let $m \in \Z$ be an integer.

Let $\Z_m$ be the set of integers modulo $m$:

$\Z_m = \set {0, 1, \ldots, m - 1}$


The operation of addition modulo $m$ is defined on $\Z_m$ as:

$\forall a, b \in \Z_m: a +_m b$ equals the remainder after $a + b$ has been divided by $m$


Definition 3

Let $m \in \Z$ be an integer.

Let $\Z_m$ be the set of integers modulo $m$:

$\Z_m = \set {0, 1, \ldots, m - 1}$


The operation of addition modulo $m$ is defined on $\Z_m$ as:

$a +_m b := a + b - k m$

where $j$ is the largest integer such that $k m \le a + b$.


Also denoted as

Although the operation of addition modulo $m$ is denoted by the symbol $+_m$, if there is no danger of confusion, the conventional addition symbol $+$ etc. is often used instead.

The notation for addition of two residue classes modulo $m$ is not usually $\eqclass a m +_m \eqclass b m$.

What is more normally seen is $a + b \pmod m$.


Cayley Table

The additive group of integers modulo $m$ can be described by showing its Cayley table.

Modulo 3

$\begin {array} {r|rrr} \struct {\Z_3, +_3} & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 0 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end {array}$


Modulo 4

$\begin{array}{r|rrrr}

\struct {\Z_4, +_4} & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \hline \eqclass 0 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \eqclass 1 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 \\ \eqclass 2 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 \\ \eqclass 3 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 \\ \end{array}$


Modulo 5

$\begin{array} {r|rrrrr}

\struct {\Z_5, +_5} & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \hline \eqclass 0 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \eqclass 1 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 \\ \eqclass 2 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 \\ \eqclass 3 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 \\ \eqclass 4 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 \\ \end{array}$


Modulo 6

$\begin{array}{r|rrrrrr}

\struct {\Z_6, +_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 1 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 \\ \eqclass 2 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 \\ \eqclass 3 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 \\ \eqclass 4 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 \\ \eqclass 5 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 \\ \end{array}$


Examples

Example: $8 + 27 \pmod {10}$

\(\ds \paren {8 + 27} \pmod {10}\) \(=\) \(\ds \paren {18 + 7} \pmod {10}\)
\(\ds \) \(=\) \(\ds 5 \pmod {10}\)


Also see

  • Results about modulo addition can be found here.


Sources