Definition:Multiplicative Norm Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.

Let $\norm {\, \cdot \,}: R \to \R_{\ge 0}$ be a multiplicative norm on $R$.


The multiplicative norm axioms are the conditions on $\norm {\, \cdot \,}$ which are satisfied for all elements of $R$ in order for $\norm {\, \cdot \,}$ to be a multiplicative norm:

\((N1)\)   $:$   Positive Definiteness:      \(\displaystyle \forall x \in R:\)    \(\displaystyle \norm x = 0 \)   \(\displaystyle \iff \)   \(\displaystyle x = 0_R \)             
\((N2)\)   $:$   Multiplicativity:      \(\displaystyle \forall x, y \in R:\)    \(\displaystyle \norm {x \circ y} \)   \(\displaystyle = \)   \(\displaystyle \norm x \times \norm y \)             
\((N3)\)   $:$   Triangle Inequality:      \(\displaystyle \forall x, y \in R:\)    \(\displaystyle \norm {x + y} \)   \(\displaystyle \le \)   \(\displaystyle \norm x + \norm y \)             


Also see