Definition:Non-Archimedean/Norm (Vector Space)

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {R, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_R$.

Let $X$ be a vector space over $R$, with zero $0_X$.


Definition 1

A norm $\norm {\,\cdot\,} $ on $X$ is non-Archimedean if and only if $\norm {\, \cdot \,}$ satisfies the axiom:

\((\text N 4)\)   $:$   Ultrametric Inequality:      \(\ds \forall x, y \in X:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \max \set {\norm x, \norm y} \)      


Definition 2

A non-Archimedean norm on $X$ is a mapping from $X$ to the non-negative reals:

$\norm {\, \cdot \,}: X \to \R_{\ge 0}$

satisfying the non-Archimedean norm axioms:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in X:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = 0_R \)      
\((\text N 2)\)   $:$   Positive Homogeneity:      \(\ds \forall x \in X, \lambda \in R:\)    \(\ds \norm {\lambda x} \)   \(\ds = \)   \(\ds \norm {\lambda}_R \times \norm x \)      
\((\text N 4)\)   $:$   Ultrametric Inequality:      \(\ds \forall x, y \in X:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \max \set {\norm x, \norm y} \)      


The pair $\struct {X, \norm {\, \cdot \, } }$ is a non-Archimedean normed vector space.


Archimedean

A norm $\norm {\,\cdot\,} $ on a vector space $X$ is Archimedean if and only if it is not non-Archimedean.


Also see