Definition:Operation Induced by Injection
Jump to navigation
Jump to search
Definition
Let $\struct {T, \circ}$ be an algebraic structure.
Let $f: S \to T$ be an injection.
Then the operation induced on $S$ by $f$ and $\circ$ is the binary operation $\circ_f$ on $S$ defined by:
- $\circ_f: S \times S \to S: x \circ_f y := \map {f^{-1} } {\map f x \circ \map f y}$
Also known as
This is an instance of the more general phenomenon of a structure being pulled back along a function.
Also see
Thus $\circ_f$ may be called the pullback of $\circ$ along $f$; it may be denoted by $f^* \circ$.