Definition:Ordered Integral Domain/Definition 1

From ProofWiki
Jump to navigation Jump to search


An ordered integral domain is an integral domain $\struct {D, +, \times}$ which has a strict positivity property $P$:

\((\text P 1)\)   $:$   Closure under Ring Addition:      \(\ds \forall a, b \in D:\) \(\ds \map P a \land \map P b \implies \map P {a + b} \)      
\((\text P 2)\)   $:$   Closure under Ring Product:      \(\ds \forall a, b \in D:\) \(\ds \map P a \land \map P b \implies \map P {a \times b} \)      
\((\text P 3)\)   $:$   Trichotomy Law:      \(\ds \forall a \in D:\) \(\ds \paren {\map P a} \lor \paren {\map P {-a} } \lor \paren {a = 0_D} \)      
For $\text P 3$, exactly one condition applies for all $a \in D$.      

An ordered integral domain can be denoted:

$\struct {D, +, \times \le}$

where $\le$ is the total ordering induced by the strict positivity property.

Also see

  • Results about ordered integral domains can be found here.