Definition:Partial Derivative/Real Analysis/Point/Definition 2
Jump to navigation
Jump to search
Definition
Let $U \subset \R^n$ be an open set.
Let $f: U \to \R$ be a real-valued function.
Let $a = \tuple {a_1, a_2, \ldots, a_n}^\intercal \in U$.
Let $f$ be differentiable at $a$.
Let $i \in \set {1, 2, \ldots, n}$.
The $i$th partial derivative of $f$ at $a$ is the limit:
- $\map {\dfrac {\partial f} {\partial x_i} } a = \displaystyle \lim_{x_i \mathop \to a_i} \frac {\map f {a_1, a_2, \ldots, x_i, \ldots, a_n} - \map f a} {x_i - a}$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 13$: Partial Derivatives: $13.58, \ 13.59$
- 2005: Roland E. Larson, Robert P. Hostetler and Bruce H. Edwards: Calculus (8th ed.): $\S 13.3$