# Definition:Partial Derivative/Real Analysis/Point/Definition 2

Jump to navigation
Jump to search

## Definition

Let $U \subset \R^n$ be an open set.

Let $f: U \to \R$ be a real-valued function.

Let $a = \tuple {a_1, a_2, \ldots, a_n}^\intercal \in U$.

Let $f$ be differentiable at $a$.

Let $i \in \set {1, 2, \ldots, n}$.

The **$i$th partial derivative of $f$ at $a$** is the limit:

- $\map {\dfrac {\partial f} {\partial x_i} } a = \displaystyle \lim_{x_i \mathop \to a_i} \frac {\map f {a_1, a_2, \ldots, x_i, \ldots, a_n} - \map f a} {x_i - a}$

## Sources

- 1968: Murray R. Spiegel:
*Mathematical Handbook of Formulas and Tables*... (previous) ... (next): $\S 13$: Partial Derivatives: $13.58, \ 13.59$

- 2005: Roland E. Larson, Robert P. Hostetler and Bruce H. Edwards:
*Calculus*(8th ed.): $\S 13.3$