Definition:Perfectly T4 Space

From ProofWiki
Jump to navigation Jump to search

Definition

Let $T = \left({S, \tau}\right)$ be a topological space.


$T$ is a perfectly $T_4$ space if and only if:

$(1): \quad T$ is a $T_4$ space
$(2): \quad$ Every closed set in $T$ is a $G_\delta$ set.

That is:

Every closed set in $T$ can be written as a countable intersection of open sets of $T$.


Also see

  • Results about perfectly $T_4$ spaces can be found here.


Sources