Definition:Pointwise Inequality of Real-Valued Functions

From ProofWiki
Jump to navigation Jump to search


Let $S$ be a set.

Let $f, g: S \to \R$ be real-valued functions.

Then pointwise inequality of $f$ and $g$, denoted $f \le g$, is defined to hold if and only if:

$\forall s \in S: f \left({s}\right) \le g \left({s}\right)$

where $\le$ denotes the usual ordering on the real numbers $\R$.

Thence pointwise inequality of real-valued functions is an instance of an induced relation on mappings.

Also see