Definition:Polynomial over Ring/Multiple Variables
Jump to navigation
Jump to search
Definition
Let $R$ be a commutative ring with unity.
Let $I$ be a set.
A polynomial over $R$ in $I$ variables is an element of a polynomial ring in $I$ variables over $R$.
Thus:
- Let $P \in R \left[{\left\langle{X_i}\right\rangle_{i \mathop \in I} }\right]$ be a polynomial
is a short way of saying:
- Let $R \left[{\left\langle{X_i}\right\rangle_{i \mathop \in I} }\right]$ be a polynomial ring in $I$ variables over $R$, call its family of variables $\left\langle{X_i}\right\rangle_{i \mathop \in I}$, and let $P$ be an element of this ring.