Definition:Rank/Matrix

From ProofWiki
Jump to navigation Jump to search

Definition

Definition 1

Let $K$ be a field.

Let $\mathbf A$ be an $m \times n$ matrix over $K$.


Then the rank of $\mathbf A$, denoted $\map \rho {\mathbf A}$, is the dimension of the subspace of $K^m$ generated by the columns of $\mathbf A$.


That is, it is the dimension of the column space of $\mathbf A$.


Definition 2

Let $K$ be a field.

Let $\mathbf A$ be an $m \times n$ matrix over $K$.

Let $\mathbf A$ be converted to echelon form $\mathbf B$.

Let $\mathbf B$ have exactly $k$ non-zero rows.

Then the rank of $\mathbf A$, denoted $\map \rho {\mathbf A}$, is $k$.


Definition 3

Let $K$ be a field.

Let $\mathbf A$ be an $m \times n$ matrix over $K$.

The rank of $\mathbf A$, denoted $\map \rho {\mathbf A}$ is the largest number of elements in a linearly independent set of rows of $\mathbf A$.


Also known as

The rank of a matrix can also be referred to as its row rank.

Some sources denote the rank of a matrix $\mathbf A$ as:

$\map {\mathrm {rk} } {\mathbf A}$


Examples

Arbitrary Matrix $1$

Let $\mathbf A = \begin {bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ \end {bmatrix}$

The rank of $\mathbf A$ is $3$.


Arbitrary Matrix $2$

Let $\mathbf A = \begin {bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end {bmatrix}$

The rank of $\mathbf A$ is $2$.


Arbitrary Matrix $3$

Let $\mathbf A = \begin {bmatrix} 1 & 2 & 3 & 5 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \end {bmatrix}$

The rank of $\mathbf A$ is $3$.


Arbitrary Matrix $4$

Let $\mathbf A = \begin {bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 3 \end {bmatrix}$

The rank of $\mathbf A$ is $2$.


Arbitrary Matrix $5$

Let $\mathbf A = \begin {bmatrix} -1 & 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 & 4 \\ -1 & -2 & -3 & -4 & -5 \end {bmatrix}$

The rank of $\mathbf A$ is $2$.


Also see

  • Results about the rank of a matrix can be found here.