# Definition:Rational Number/Geometrical Definition

Jump to navigation
Jump to search

## Definition

The validity of the material on this page is questionable.In particular: nopeYou can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Questionable}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

In the words of Euclid:

*With these hypotheses, it is proved that there exist straight lines infinite in multitude which are commensurable and incommensurable respectively, some in length only, and others in square also, with an assigned straight line. Let then the assigned straight line be called***rational**, and those straight lines which are commensurable with it, whether in length and in square or square only,**rational**, but those which are incommensurable with it**irrational**.

(*The Elements*: Book $\text{X}$: Definition $3$)

*And let the square on the assigned straight line be called***rational**and those areas which are commensurable with it**rational**, but those which are incommensurable with it**irrational**, and the straight lines which produce them**irrational**, that is, in case the areas are squares, the sides themselves, but in case they are any other rectilineal figures, the straight lines on which are described squares equal to them.

(*The Elements*: Book $\text{X}$: Definition $4$)

## Also see

- Results about
**rational numbers**can be found**here**.