Definition:Real Number/Operations on Real Numbers

From ProofWiki
Jump to: navigation, search

Definition

Let $\R$ be the set of real numbers.

We interpret the following symbols:

\((R1)\)   $:$   Negative      \(\displaystyle \forall a \in \R:\) \(\displaystyle \exists ! \left({-a}\right) \in \R: a + \left({-a}\right) = 0 \)             
\((R2)\)   $:$   Minus      \(\displaystyle \forall a, b \in \R:\) \(\displaystyle a - b = a + \left({-b}\right) \)             
\((R3)\)   $:$   Reciprocal      \(\displaystyle \forall a \in \R \setminus \left\{ {0}\right\}:\) \(\displaystyle \exists ! a^{-1} \in \R: a \times \left({a^{-1} })\right) = 1 = \left({a^{-1} }\right) \times a \)             it is usual to write $1/a$ or $\dfrac 1 a$ for $a^{-1}$
\((R4)\)   $:$   Divided by      \(\displaystyle \forall a \in \R \setminus \left\{ {0}\right\}:\) \(\displaystyle a \div b = \dfrac a b = a / b = a \times \left({b^{-1} }\right) \)             it is usual to write $1/a$ or $\dfrac 1 a$ for $a^{-1}$

The validity of all these operations is justified by Real Numbers form Field.


Sources