Definition:Real Number Plane

From ProofWiki
Jump to navigation Jump to search

Definition

The points on the plane are in one-to-one correspondence with the $\R$-vector space $\R^2$.

Hence the real vector space $\R^2$ is called the real number plane.

So from the definition of an ordered $n$-tuple, the general element of $\R^2$ can be defined as an ordered couple $\tuple {x_1, x_2}$ where $x_1, x_2 \in \R$, or, conventionally, $\tuple {x, y}$.


Thus, we can identify the elements of $\R^2$ with points in the plane and refer to the point as its coordinates.

Thus we can refer to $\R^2$ as the plane.


Also see

The validity of this definition is shown in Ordered Basis for Coordinate Plane.


Sources