Definition:Right-Hand Derivative/Real Function

From ProofWiki
Jump to navigation Jump to search

Definition

Let $f: \R \to \R$ be a real function.


The right-hand derivative of $f$ is defined as the right-hand limit:

$\displaystyle \map {f'_+} x = \lim_{h \mathop \to 0^+} \frac {\map f {x + h} - \map f x} h$

If the right-hand derivative exists, then $f$ is said to be right-hand differentiable at $x$.


Also known as

Some sources give this as the right derivative.


Also see


Sources