Definition:Reflexive Bilinear Form
Jump to navigation
Jump to search
Definition
Let $\mathbb K$ be a field.
Let $V$ be a vector space over $\mathbb K$.
Let $b$ be a bilinear form on $V$.
Then $b$ is reflexive if and only if:
- $\forall v, w \in V: b \left({v, w}\right) = 0 \implies b \left({w, v}\right) = 0$