Definition:Renaming Mapping

From ProofWiki
Jump to navigation Jump to search


Let $f: S \to T$ be a mapping.

The renaming mapping $r: S / \mathcal R_f \to \Img f$ is defined as:

$r: S / \mathcal R_f \to \Img f: \map r {\eqclass x {\mathcal R_f} } = \map f x$


$\mathcal R_f$ is the equivalence induced by the mapping $f$
$S / \mathcal R_f$ is the quotient set of $S$ determined by $\mathcal R_f$
$\eqclass x {\mathcal R_f}$ is the equivalence class of $x$ under $\mathcal R_f$.

Also known as

This mapping can also be seen referred to as the mapping on $S / \mathcal R_f$ induced by $f$.

However, the term induced mapping is used so often throughout this area of mathematics that it would make sense to use a less-overused term whenever possible.

Also see