# Definition:Riemannian Volume Form/Definition 1

Jump to navigation
Jump to search

## Definition

Let $\struct {M, g}$ be an oriented $n$-dimensional Riemannian manifold.

Let $T^* M$ be the cotangent bundle of $M$.

Let $\tuple {\epsilon^1, \ldots, \epsilon^n}$ be a local oriented orthonormal coframe of $T^* M$.

The **Riemannian volume form**, denoted by $\rd V_g$, is an $n$-form such that:

- $\rd V_g = \epsilon^1 \wedge \ldots \wedge \epsilon^n$

## Sources

- 2018: John M. Lee:
*Introduction to Riemannian Manifolds*(2nd ed.): $\S 2$: Riemannian Metrics. Basic Constructions on Riemannian Manifolds