Definition:Ideal of Ring/Right Ideal

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {R, +, \circ}$ be a ring.

Let $\struct {J, +}$ be a subgroup of $\struct {R, +}$.


$J$ is a right ideal of $R$ if and only if:

$\forall j \in J: \forall r \in R: j \circ r \in J$

that is, if and only if:

$\forall r \in R: J \circ r \subseteq J$


Also see


Sources