Definition:Semi-Inner Product/Complex Field

From ProofWiki
Jump to navigation Jump to search

Definition

Let $V$ be a vector space over a complex subfield $\GF$.


A (complex) semi-inner product is a mapping $\innerprod \cdot \cdot: V \times V \to \GF$ that satisfies the (complex) semi-inner product axioms:

\((1)\)   $:$   Conjugate Symmetry      \(\ds \forall x, y \in V:\) \(\ds \quad \innerprod x y = \overline {\innerprod y x} \)      
\((2)\)   $:$   Sesquilinearity      \(\ds \forall x, y, z \in V, \forall a \in \GF:\) \(\ds \quad \innerprod {a x + y} z = a \innerprod x z + \innerprod y z \)      
\((3)\)   $:$   Non-Negative Definiteness      \(\ds \forall x \in V:\) \(\ds \quad \innerprod x x \in \R_{\ge 0} \)      


Complex Semi-Inner Product Space

Let $V$ be a vector space over a complex subfield $\GF$.

Let $\innerprod \cdot \cdot : V \times V \to \GF$ be an complex semi-inner product on $V$.


We say that $\struct {V, \innerprod \cdot \cdot}$ is a (complex) semi-inner product space.


Examples

Sequences with Finite Support

Let $\GF$ be a subfield of $\C$.

Let $V$ be the vector space of sequences with finite support over $\GF$.


Let $\innerprod \cdot \cdot: V \times V \to \GF$ be the mapping defined by:

$\ds \innerprod {\sequence {a_n} } {\sequence {b_n} } = \sum_{n \mathop = 1}^\infty a_{2 n} \overline {b_{2 n} }$


Then $\innerprod \cdot \cdot$ is a semi-inner product on $V$ but not an inner product on $V$.


Also see


Sources