# Definition:Set of Literals

Jump to navigation
Jump to search

## Informal Definition

Let $S$ be a set.

Informally, the **set of literals** on $S$ is obtained by adjoining formal inverses of the elements of $S$:

- $S^\pm = S \cup \set {s^{-1} : s \in S}$

## Definition

Let $S$ be a set.

A **set of literals** on $S$ is a triple $\struct {S^\pm, \iota, \theta}$ where:

- $S^\pm$ is a set
- $\iota : S \to S^\pm$ is a mapping, the
**canonical injection** - $\theta : S^\pm \to S^\pm$ is an involution without fixed points, the
**inversion mapping**, and we also denote $\map \theta s = s^{-1}$

such that $S^\pm = \iota \sqbrk S \sqcup \theta \sqbrk {\iota \sqbrk S}$ is the disjoint union of the image of $S$ under $\iota$ and its image under $\theta$.

Explicitly, $S^\pm$ can be defined as follows.

Let $S^\pm = S \sqcup S = S \times \set 0 \cup S \times \set 1$ be the disjoint union of $S$ with $S$.

Let $\iota: S \to S^\pm$ be the canonical mapping:

- $s \mapsto \tuple {s, 0}$

Let $\theta : S^\pm \to S^\pm$ be the mapping:

- $\tuple {s, i} \mapsto \tuple {s, 1 - i}$