Definition:Sigma-Algebra

From ProofWiki
Jump to navigation Jump to search

Definition

Definition 1

Let $X$ be a set.

Let $\Sigma$ be a system of subsets of $X$.


$\Sigma$ is a $\sigma$-algebra over $X$ if and only if $\Sigma$ satisfies the sigma-algebra axioms:

\((\text {SA 1})\)   $:$   Unit:    \(\ds X \in \Sigma \)      
\((\text {SA 2})\)   $:$   Closure under Complement:      \(\ds \forall A \in \Sigma:\) \(\ds \relcomp X A \in \Sigma \)      
\((\text {SA 3})\)   $:$   Closure under Countable Unions:      \(\ds \forall A_n \in \Sigma: n = 1, 2, \ldots:\) \(\ds \bigcup_{n \mathop = 1}^\infty A_n \in \Sigma \)      


Definition 2

Let $X$ be a set.

Let $\Sigma$ be a system of subsets of $X$.


$\Sigma$ is a $\sigma$-algebra over $X$ if and only if $\Sigma$ satisfies the sigma-algebra axioms:

\((\text {SA 1}')\)   $:$   Unit:    \(\ds X \in \Sigma \)      
\((\text {SA 2}')\)   $:$   Closure under Set Difference:      \(\ds \forall A, B \in \Sigma:\) \(\ds A \setminus B \in \Sigma \)      
\((\text {SA 3}')\)   $:$   Closure under Countable Disjoint Unions:      \(\ds \forall A_n \in \Sigma: n = 1, 2, \ldots:\) \(\ds \bigsqcup_{n \mathop = 1}^\infty A_n \in \Sigma \)      


Definition 3

A $\sigma$-algebra $\Sigma$ is a $\sigma$-ring with a unit.


Definition 4

Let $X$ be a set.

A $\sigma$-algebra $\Sigma$ over $X$ is an algebra of sets which is closed under countable unions.


Also known as

The term sigma-algebra can also be seen without the hyphen: sigma algebra.

Some sources refer to a sigma-algebra as a sigma-field


Examples

Trivial $\sigma$-Algebra

Let $X$ be a set.


The trivial $\sigma$-algebra on $X$ is the $\sigma$-algebra defined as:

$\set {\O, X}$


Also see

  • Results about $\sigma$-algebras can be found here.


Linguistic Note

The $\sigma$ in $\sigma$-algebra is the Greek letter sigma which equates to the letter s.

$\sigma$ stands for for somme, which is French for union, and also summe, which is German for union.