Definition:Contour/Simple/Complex Plane

From ProofWiki
Jump to navigation Jump to search


Let $C_1, \ldots, C_n$ be directed smooth curves in the complex plane $\C$.

Let $C_k$ be parameterized by the smooth path $\gamma_k: \closedint {a_k} {b_k} \to \C$ for all $k \in \set {1, \ldots, n}$.

Let $C$ be the contour defined by the finite sequence $C_1, \ldots, C_n$.

$C$ is a simple contour if and only if:

$(1): \quad$ For all $j, k \in \set {1, \ldots, n}, t_1 \in \hointr {a_j} {b_j}, t_2 \in \hointr {a_k} {b_k}$ with $t_1 \ne t_2$, we have $\map {\gamma_j} {t_1} \ne \map {\gamma_j} {t_2}$.
$(2): \quad$ For all $k \in \set {1, \ldots, n}, t \in \hointr {a_k} {b_k}$ where either $k \ne 1$ or $t \ne a_1$, we have $\map {\gamma_k} t \ne \map {\gamma_n} {b_n}$.

Thus a simple contour is a contour that does not intersect itself.

Also see