# Definition:Smooth Path/Real Cartesian Space

## Definition

Let $\R^n$ be a real cartesian space of $n$ dimensions.

Let $\left[{a \,.\,.\, b}\right]$ be a closed real interval.

Let $\rho: \left[{a \,.\,.\, b}\right] \to \R^n$ be a path in $\R^n$.

That is, let $\rho$ be a continuous real-valued function from $\left[{a \,.\,.\, b}\right]$ to $\R^n$.

For each $k \in \left\{ {1, 2, \ldots, n}\right\}$, define the real function $\rho_k: \left[{a \,.\,.\, b}\right] \to \R$ by:

- $\forall t \in \left[{a \,.\,.\, b}\right]: \rho_k \left({t}\right) = \pr_k \left({\rho \left({t}\right)}\right)$

where $\pr_k$ denotes the $k$th projection from the image $\operatorname{Im} \left({\rho}\right)$ of $\rho$ to $\R$.

Then $\rho$ is a **smooth path (in $\R^n$)** if and only if:

- $(1): \quad$ all of $\pr_k$ are continuously differentiable

- $(2): \quad$ for all $t \in \left[{a \,.\,.\, b}\right]$, at least one $\rho_k' \left({t}\right) \ne 0$, where $\rho_k'$ denotes the derivative of $\rho_k$ with respect to $t$.

### Closed Smooth Path

Let $\rho: \left[{a \,.\,.\, b}\right] \to \R^n$ be a **smooth path in $\R^n$**.

$\rho$ is a **closed smooth path** if and only if $\rho$ is a closed path.

That is, if and only if $\rho \left({a}\right) = \rho \left({b}\right)$.

### Simple Smooth Path

Let $\rho: \left[{a \,.\,.\, b}\right] \to \R^n$ be a **smooth path in $\R^n$**.

$\rho$ is a **simple smooth path (in $\R^n$)** if and only if:

- $(1): \quad \rho$ is injective on the half-open interval $\left[{a \,.\,.\, b}\right)$

- $(2): \quad \forall t \in \left({a \,.\,.\, b}\right): \rho \left({t}\right) \ne \rho \left({b}\right)$

That is, if and only if $t_1, t_2 \in \left({a \,.\,.\, b}\right)$ with $t_1 \ne t_2$, then $\gamma \left({a}\right) \ne \gamma \left({t_1}\right) \ne \gamma \left({t_2}\right) \ne \gamma \left({b}\right)$.

## Also see