Definition:Splitting Field

From ProofWiki
Jump to: navigation, search


Definition

Of a polynomial

Let $K$ be a field.

Let $f$ be a polynomial over $K$.


A splitting field of $f$ over $K$ is a field extension $L / K$ such that:

$f = k \left({ X - \alpha_1 }\right) \cdots \left({ X-\alpha_n }\right)$

for some $k \in K$, $\alpha_1, \ldots, \alpha_n \in L$.


We say that $f$ splits over $L$.


Of a set of polynomials

Let $K$ be a field.

Let $\mathcal F$ be a set of polynomials over $K$.


A splitting field of $\mathcal F$ over $K$ is a field extension $L / K$ such that for any $f \in \mathcal F$:

$f = k \left({ X - \alpha_1 }\right) \cdots \left({ X - \alpha_n }\right)$

for some $k \in K$, $\alpha_1, \ldots, \alpha_n \in L$.


We say that $\mathcal F$ splits over $L$.


Minimal Splitting Field

Of a polynomial

Let $K$ be a field.

Let $f$ be a polynomial over $K$.

Let $L/K$ be a field extension of $K$.


Then $L$ is a minimal splitting field for $f$ over $K$ if $L$ is a splitting field for $f$ and no field extension properly contained in $L$ has this property.


Of a set of polynomials

Let $K$ be a field.

Let $\mathcal F$ be a set of polynomials over $K$.

Let $L / K$ be a field extension of $K$.


Then $L$ is a minimal splitting field for $\mathcal F$ over $K$ if $L$ is a splitting field for $f$ and no field extension properly contained in $L$ has this property.


Also see

Sources