# Definition:Splitting Field

This page has been identified as a candidate for refactoring.Extract minimal splitting field into its own (transcluded) page, and then separate the subpages out into their own pages.Until this has been finished, please leave
`{{Refactor}}` in the code.
Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Refactor}}` from the code. |

## Definition

### Of a polynomial

Let $K$ be a field.

Let $f$ be a polynomial over $K$.

A **splitting field** of $f$ over $K$ is a field extension $L / K$ such that:

- $f = k \paren {X - \alpha_1} \cdots \paren {X - \alpha_n}$

for some $k \in K$, $\alpha_1, \ldots, \alpha_n \in L$.

We say that $f$ **splits** over $L$.

### Of a set of polynomials

Let $K$ be a field.

Let $\FF$ be a set of polynomials over $K$.

A **splitting field** of $\FF$ over $K$ is a field extension $L / K$ such that for any $f \in \FF$:

- $f = k \paren {X - \alpha_1} \cdots \paren {X - \alpha_n}$

for some $k \in K$, $\alpha_1, \ldots, \alpha_n \in L$.

We say that $\FF$ **splits** over $L$.

## Minimal Splitting Field

### Of a polynomial

Let $K$ be a field.

Let $f$ be a polynomial over $K$.

Let $L/K$ be a field extension of $K$.

Then $L$ is a **minimal splitting field** for $f$ over $K$ if $L$ is a splitting field for $f$ and no field extension properly contained in $L$ has this property.

### Of a set of polynomials

Let $K$ be a field.

Let $\FF$ be a set of polynomials over $K$.

Let $L / K$ be a field extension of $K$.

Then $L$ is a **minimal splitting field** for $\FF$ over $K$ if $L$ is a splitting field for $f$ and no field extension properly contained in $L$ has this property.

## Also see

## Sources

- 1944: Emil Artin and Arthur N. Milgram:
*Galois Theory*(2nd ed.) $\text{II}$: Field Theory: $\text{D}$ Splitting Fields