# Definition:Splitting Field

## Contents

## Definition

### Of a polynomial

Let $K$ be a field.

Let $f$ be a polynomial over $K$.

A **splitting field** of $f$ over $K$ is a field extension $L / K$ such that:

- $f = k \left({ X - \alpha_1 }\right) \cdots \left({ X-\alpha_n }\right)$

for some $k \in K$, $\alpha_1, \ldots, \alpha_n \in L$.

We say that $f$ **splits** over $L$.

### Of a set of polynomials

Let $K$ be a field.

Let $\mathcal F$ be a set of polynomials over $K$.

A **splitting field** of $\mathcal F$ over $K$ is a field extension $L / K$ such that for any $f \in \mathcal F$:

- $f = k \left({ X - \alpha_1 }\right) \cdots \left({ X - \alpha_n }\right)$

for some $k \in K$, $\alpha_1, \ldots, \alpha_n \in L$.

We say that $\mathcal F$ **splits** over $L$.

## Minimal Splitting Field

### Of a polynomial

Let $K$ be a field.

Let $f$ be a polynomial over $K$.

Let $L/K$ be a field extension of $K$.

Then $L$ is a **minimal splitting field** for $f$ over $K$ if $L$ is a splitting field for $f$ and no field extension properly contained in $L$ has this property.

### Of a set of polynomials

Let $K$ be a field.

Let $\mathcal F$ be a set of polynomials over $K$.

Let $L / K$ be a field extension of $K$.

Then $L$ is a **minimal splitting field** for $\mathcal F$ over $K$ if $L$ is a splitting field for $f$ and no field extension properly contained in $L$ has this property.

## Also see

## Sources

- 1944: Emil Artin and Arthur N. Milgram:
*Galois Theory*(2nd ed.) $\text{II}$: Field Theory: $\text{D}$ Splitting Fields