Definition:Square
Definition
Geometry
A square is a regular quadrilateral.
That is, a regular polygon with $4$ sides.
That is, a square is a plane figure with four sides all the same length and whose angles are all equal.
Abstract Algebra
Let $\struct {S, \circ}$ be an algebraic structure.
Let $f: S \to S$ be the mapping from $S$ to $S$ defined as:
- $\forall x \in S: \map f x := x \circ x$
This is usually denoted $x^2$:
- $x^2 := x \circ x$
Square Function on Numbers
Let $\F$ denote one of the standard classes of numbers: $\N$, $\Z$, $\Q$, $\R$, $\C$.
Definition 1
The square (function) on $\F$ is the mapping $f: \F \to \F$ defined as:
- $\forall x \in \F: \map f x = x \times x$
where $\times$ denotes multiplication.
Definition 2
The square (function) on $\F$ is the mapping $f: \F \to \F$ defined as:
- $\forall x \in \F: \map f x = x^2$
where $x^2$ denotes the $2$nd power of $x$.
Square Number
Square numbers are those denumerating a collection of objects which can be arranged in the form of a square.
They can be denoted:
- $S_1, S_2, S_3, \ldots$
Definition 1
An integer $n$ is classified as a square number if and only if:
- $\exists m \in \Z: n = m^2$
where $m^2$ denotes the integer square function.
Euclid's Definition
In the words of Euclid:
- A square number is equal multiplied by equal, or a number which is contained by two equal numbers.
(The Elements: Book $\text{VII}$: Definition $18$)
Definition 2
- $S_n = \begin {cases} 0 & : n = 0 \\ S_{n - 1} + 2 n - 1 & : n > 0 \end {cases}$
Definition 3
- $\ds S_n = \sum_{i \mathop = 1}^n \paren {2 i - 1} = 1 + 3 + 5 + \cdots + \paren {2 n - 1}$
Definition 4
- $\forall n \in \N: S_n = \map P {4, n} = \begin{cases} 0 & : n = 0 \\ \map P {4, n - 1} + 2 \paren {n - 1} + 1 & : n > 0 \end{cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
Square of Vector Quantity
Let $\mathbf u$ be a vector.
Let $\mathbf u \cdot \mathbf u$ denote the dot product of $\mathbf u$ with itself.
Then $\mathbf u \cdot \mathbf u$ can be referred to as the square of $\mathbf u$ and can be denoted $\mathbf u^2$.
Sources
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $6$: Curves and Coordinates: Functions