Definition:Standard Generator Matrix for Linear Code
Definition
Let $n, k \in \Z_{>0}$ be strictly positive integers such that $n > k$.
Let $p$ be a prime number.
Let $\Z_p$ denote the set of residue classes modulo $p$.
A (standard) generator matrix $G$ over $\Z_p$ is a $k \times n$ matrix such that:
- The first $k$ columns form the $k \times k$ identity matrix.
Examples
Linear $\tuple {3, 2}$-code in $\Z_2$
Let $G$ be the standard generator matrix:
- $G := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
$G$ generates the linear code $C$:
- $C = \set {000, 101, 011, 110}$
The minimum distance of $C$ is $2$, so $C$ detects $1$ transmission error and corrects none.
Linear $\tuple {5, 3}$-code in $\Z_2$
Let $G$ be the standard generator matrix:
- $G := \begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$
$G$ generates the linear code $C$:
- $C = \set {00000, 00111, 01010, 01101, 10001, 10110, 11011, 11100}$
The minimum distance of $C$ is $3$, so $C$ detects $1$ transmission error and corrects $0$ transmission errors.
Linear $\tuple {6, 3}$-code in $\Z_2$
Let $G$ be the standard generator matrix:
- $G := \begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$
$G$ generates the linear code $C$:
- $C = \set {000000, 100110, 010101, 110011, 001011, 101101, 011110, 111000}$
The minimum distance of $C$ is $3$, so $C$ detects $2$ transmission errors and corrects $1$ transmission error.
Linear $\tuple {4, 2}$-code in $\Z_3$: Example 1
Let $G$ be the standard generator matrix:
- $G := \begin{pmatrix}
1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$
$G$ generates the linear code $C$:
- $C = \set {0000, 0112, 0221, 1021, 1100, 1212, 2012, 2121, 2200}$
The minimum distance of $C$ is $2$, so $C$ detects $1$ transmission error and corrects $0$ transmission errors.
Linear $\tuple {4, 2}$-code in $\Z_3$: Example 2
Let $G$ be the standard generator matrix:
- $G := \begin{pmatrix}
1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$
$G$ generates the linear code $C$:
- $C = \set {0000, 0112, 0221, 1011, 1120, 1202, 2022, 2101, 2210}$
The minimum distance of $C$ is $3$, so $C$ detects $2$ transmission errors and corrects $1$ transmission error.
Linear $\tuple {5, 3}$-code in $\Z_5$
Let $G$ be the standard generator matrix over $\Z_5$:
- $G := \begin{pmatrix}
1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 1 \\ \end{pmatrix}$
$G$ generates a linear code which detects $1$ transmission error and corrects $0$ transmission errors.
Also known as
A standard generator matrix is also known as a generator matrix.
Also see
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $6$: Error-correcting codes: Definition $6.11$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): coding: 1.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): generator matrix