Definition:Topological Subspace

From ProofWiki
Jump to navigation Jump to search

Definition

Let $T = \struct {S, \tau}$ be a topological space.

Let $H \subseteq S$ be a non-empty subset of $S$.


Define:

$\tau_H := \set {U \cap H: U \in \tau} \subseteq \powerset H$

where $\powerset H$ denotes the power set of $H$.


Then the topological space $T_H = \struct {H, \tau_H}$ is called a (topological) subspace of $T$.


The set $\tau_H$ is referred to as the subspace topology on $H$.


Also known as

The subspace topology $\tau_H$ is also known as the relative topology or the induced topology on $H$.


Also see

  • Results about topological subspaces can be found here.


Sources