Definition:Tetration
![]() | This page has been identified as a candidate for refactoring of basic complexity. Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
Definition
Definition for Integers
For all $x \in \R$, $n \in \Z_{\ge 0}$:
- ${}^n x := \begin {cases} 1 & : n = 0 \\ x^{\paren { {}^{n - 1} x} } & : n > 0 \\ \end {cases}$
Using Knuth uparrow notation:
- $x \uparrow \uparrow n := \begin {cases} 1 & : n = 0 \\ x \uparrow \paren {x \uparrow \uparrow \paren {n - 1} } & : n > 0 \\ \end {cases}$
Definition for base $b \ge \map \exp {1 / e}$
Let $b \in \R$ such that $b \ge \map \exp {\dfrac 1 e}$.
Let $L \in \C$ be a fixed point of $\log_b$ such that $\map \Im L \ge 0$.
Let $C = \C \setminus \set {x \in \R: x \le -2}$.
Let $\operatorname {tet}_b: C \mapsto \C$ be the superfunction of $z \mapsto b^z$ such that:
- $\map {\operatorname {tet}_b} 0 = 1$
- $\forall z \in C: \map {\operatorname {tet}_b} {z^*} = \map {\operatorname {tet}_b} z^*$
- $\ds \forall x \in \R: \lim_{y \mathop \to +\infty} \map {\operatorname {tet}_b} {x + \mathrm i y} = L$
Then the function $\operatorname {tet}_b$ is called tetration to base $b$.
Definition for $0 < b < \map \exp {1 / e}$
Let $b \in \R$ such that $1 < b < \map \exp {\dfrac 1 e}$.
Let $L_1, L_2 \in \R: L_1 < L_2$ be the fixed points of $\log_b$.
Let $T = \dfrac{2 \pi i} {\map \ln {L_1 \map \ln b} }$
Let $C = \C \setminus \set {x + T m, x \in \R: x \le -2, m \in \Z}$
Let $\operatorname {tet}_b: C \mapsto \C$ be the superfunction of $z \mapsto b^z$ such that:
- $\map {\operatorname {tet}_b} 0 = 1$
- $\forall z \in C: \map {\operatorname {tet}_b} {z^*} = \map {\operatorname {tet}_b} z^*$
- $\forall z \in C: \map {\operatorname {tet}_b} z = \map {\operatorname {tet}_b} {z + T}$
- $\ds \forall y \in \R: \lim_{x \mathop \to -\infty} \map {\operatorname {tet}_b} {x + \mathrm i y} = L_2$
- $\ds \forall \epsilon \in \R_{>0}: \exists X \in \R$ such that:
- $\forall x \in \R: x > X: \size {\map {\operatorname {tet}_b} {x + i y} - L_1} < \epsilon$
Then the function $\operatorname {tet}_b$ is called tetration to base $b$.