Definition:Binomial (Euclidean)/Third Binomial
< Definition:Binomial (Euclidean)(Redirected from Definition:Third Binomial)
Jump to navigation
Jump to search
Definition
Let $a$ and $b$ be two (strictly) positive real numbers such that $a + b$ is a binomial.
Then $a + b$ is a third binomial if and only if:
- $(1): \quad a \notin \Q$
- $(2): \quad b \notin \Q$
- $(3): \quad \dfrac {\sqrt {a^2 - b^2}} a \in \Q$
where $\Q$ denotes the set of rational numbers.
In the words of Euclid:
- and if neither of the terms be commensurable in length with the rational straight line set out, let the whole be called a third binomial.
(The Elements: Book $\text{X (II)}$: Definition $3$)
Example
Let $a = \sqrt {11}$ and $b = \sqrt {\dfrac {143} {49} }$.
Then:
\(\ds \frac {\sqrt {a^2 - b^2} } a\) | \(=\) | \(\ds \frac {\sqrt {11 - \frac {143} {49} } } {\sqrt {11} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt {\frac {396} {49} } } {\sqrt {11} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac {36} {49} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 6 7\) | \(\ds \in \Q\) |
Therefore $\sqrt {11} + \sqrt {\dfrac {143} {49} }$ is a third binomial.
Also see
- Definition:First Binomial
- Definition:Second Binomial
- Definition:Fourth Binomial
- Definition:Fifth Binomial
- Definition:Sixth Binomial
Linguistic Note
The term binomial arises from a word meaning two numbers.
This sense of the term is rarely used (if at all) outside of Euclid's The Elements nowadays.