Definition:Unital Associative Commutative Algebra Homomorphism

From ProofWiki
Jump to navigation Jump to search

Definition

Let $A$ be a commutative ring with unity.

Let $B$ and $C$ be $A$-algebras.


Definition 1

Let $B$ and $C$ be viewed as rings under $A$, say $(B, f)$ and $(C, g)$.


An $A$-algebra homomorphism $h : B \to C$ is a morphism of rings under $A$.

That is, a unital ring homomorphism $h$ such that $g = h \circ f$:

$\xymatrix{ A \ar[d]_f \ar[r]^{g} & C\\ B \ar[ru]_{h} }$


Definition 2

Let $B$ and $C$ be viewed as unital algebras over $A$.


An $A$-algebra homomorphism $h : B \to C$ is a unital algebra homomorphism.


Also see