# Definition:Vandermonde Determinant/Formulation 1

## Definition

The Vandermonde determinant of order $n$ is the determinant defined as:

$V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$

## Also presented as

The Vandermonde determinant of order $n$ can be presented in various orientations, for example:

### Ones at Right

$V_n = \begin {vmatrix} {x_1}^{n - 1} & {x_1}^{n - 2} & \cdots & x_1 & 1 \\ {x_2}^{n - 1} & {x_2}^{n - 2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {x_n}^{n - 1} & {x_n}^{n - 2} & \cdots & x_n & 1 \\ \end {vmatrix}$

### Ones at Top

$V_n = \begin {vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ {x_1}^2 & {x_2}^2 & \cdots & {x_n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ {x_1}^{n - 2} & {x_2}^{n - 2} & \cdots & {x_n}^{n - 2} \\ {x_1}^{n - 1} & {x_2}^{n - 1} & \cdots & {x_n}^{n - 1} \end {vmatrix}$

## Also see

• Results about the Vandermonde determinant can be found here.

## Source of Name

This entry was named for Alexandre-ThÃ©ophile Vandermonde.