Definition:Vandermonde Determinant/Formulation 1
Jump to navigation
Jump to search
Definition
The Vandermonde determinant of order $n$ is the determinant defined as:
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Also presented as
The Vandermonde determinant of order $n$ can be presented in various orientations, for example:
Ones at Right
- $V_n = \begin {vmatrix} {x_1}^{n - 1} & {x_1}^{n - 2} & \cdots & x_1 & 1 \\ {x_2}^{n - 1} & {x_2}^{n - 2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {x_n}^{n - 1} & {x_n}^{n - 2} & \cdots & x_n & 1 \\ \end {vmatrix}$
Ones at Top
- $V_n = \begin {vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ {x_1}^2 & {x_2}^2 & \cdots & {x_n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ {x_1}^{n - 2} & {x_2}^{n - 2} & \cdots & {x_n}^{n - 2} \\ {x_1}^{n - 1} & {x_2}^{n - 1} & \cdots & {x_n}^{n - 1} \end {vmatrix}$
Also see
- Results about the Vandermonde determinant can be found here.
Source of Name
This entry was named for Alexandre-Théophile Vandermonde.
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Vandermonde determinant