Definition:Vector Cross Product/Definition 2

From ProofWiki
Jump to navigation Jump to search


Let $\mathbf a$ and $\mathbf b$ be vectors in a vector space $\mathbf V$ of $3$ dimensions.

The vector cross product, denoted $\mathbf a \times \mathbf b$, is defined as:

$\mathbf a \times \mathbf b = \norm {\mathbf a} \, \norm {\mathbf b} \sin \theta \hat {\mathbf n}$


$\norm {\mathbf a}$ denotes the length of $\mathbf a$
$\theta$ denotes the angle from $\mathbf a$ to $\mathbf b$, measured in the positive direction
$\hat {\mathbf n}$ is the unit vector perpendicular to both $\mathbf a$ and $\mathbf b$ in the direction according to the right hand rule.


Also see


WARNING: This link is broken. Amend the page to use {{KhanAcademySecure}} and check that it links to the appropriate page.