Definition:Vector Space Monomorphism

From ProofWiki
Jump to navigation Jump to search

Definition

Let $V$ and $W$ be $K$-vector spaces.

Then $\phi: V \to W$ is a vector space monomorphism if and only if:

$(1): \quad \phi$ is an injection
$(2): \quad \forall \mathbf x, \mathbf y \in V: \phi \left({\mathbf x + \mathbf y}\right) = \phi \left({\mathbf x}\right) + \phi \left({\mathbf y}\right)$
$(3): \quad \forall \mathbf x \in V: \forall \lambda \in K: \phi \left({\lambda \mathbf x}\right) = \lambda \phi \left({\mathbf x}\right)$


Linguistic Note

The word monomorphism comes from the Greek morphe (μορφή) meaning form or structure, with the prefix mono- meaning single.

Thus monomorphism means single (similar) structure.