From ProofWiki
Jump to: navigation, search


ZFC is an abbreviation for Zermelo-Fraenkel Set Theory with the Axiom of Choice. It is a system of axiomatic set theory upon which the whole of (at least conventional) mathematics can be based.

Its basis consists of a system of Aristotelian logic, appropriately axiomatised, together with the Zermelo-Fraenkel axioms of Set Theory and the (controversial) Axiom of Choice.

These are as follows:

  • The Axiom of Subsets: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true.
  • The Axiom of Union: For every collection of sets, there exists a set that contains all the elements that belong to at least one of the sets in the collection.
  • The Axiom of Powers: For each set, there exists a collection of sets that contains amongst its elements all the subsets of the given set.
  • The Axiom of Infinity: There exists a set containing a set with no elements and the successor of each of its elements.
  • The Axiom of Replacement: For any set $S$, there exists a set $x$ such that, for any element $y$ of $S$, if there exists an element $z$ satisfying the condition $P \left({y, z}\right)$ (where $P \left({y, z}\right)$ is a propositional function), then such $z$ appear in $x$.
  • The Axiom of Choice: For every set, we can provide a mechanism for choosing one element of any non-empty subset of the set.

Source of Name

This entry was named for Ernst Zermelo and Abraham Fraenkel.