Denial of Existence/Examples/x less than or equal to 3/Examples/2, 3, 4

From ProofWiki
Jump to navigation Jump to search

Example of Denial of Existence: $\forall x \in S: x \le 3$

Let $P$ be the statement:

$\exists x \in S: x \le 3$

and $\lnot P$ its negation:

$\forall x \in S: x > 3$

Let $S = \set {2, 3, 4}$.

Then we have that:

$P$ is true

and consequently:

$\lnot P$ is false


The falsehood of $\lnot P$ can be demonstrated by citing $x \in S: x = 2$.

Thus $4$ is a counterexample to the assertion that all $x \in S$ are such that $x > 3$.

Hence its negation $P$ is true.