Derivative of Constant/Complex
Jump to navigation
Jump to search
Theorem
Let $f_c \left({z}\right)$ be the constant function on an open domain $D \in \C$, where $c \in \C$.
Then:
- $\forall z \in D : f_c' \left({z}\right) = 0$
Proof
The function $f_c: D \to \C$ is defined as:
- $\forall z \in D: f_c \left({z}\right) = c$
Thus:
\(\ds f_c' \left({z}\right)\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {f_c \left({z + h}\right) - f_c \left({z}\right)} h\) | Definition of Complex Differentiation | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {c - c} h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac 0 h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$