Derivative of Cosecant Function
Jump to navigation
Jump to search
Theorem
- $\map {\dfrac \d {\d x} } {\csc x} = -\csc x \cot x$
where $\sin x \ne 0$.
Proof 1
From the definition of the cosecant function:
- $\csc x = \dfrac 1 {\sin x}$
From Derivative of Sine Function:
- $\map {\dfrac \d {\d x} } {\sin x} = \cos x$
Then:
\(\ds \map {\dfrac \d {\d x} } {\csc x}\) | \(=\) | \(\ds \cos x \frac {-1} {\sin^2 x}\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-1} {\sin x} \frac {\cos x} {\sin x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\csc x \cot x\) | Definition of Real Cosecant Function and Definition of Real Cotangent Function |
This is valid only when $\sin x \ne 0$.
$\blacksquare$
Proof 2
\(\ds \map {\dfrac \d {\d x} } {\csc x}\) | \(=\) | \(\ds \map {\dfrac \d {\d x} } {\dfrac 1 {\sin x} }\) | Definition of Real Cosecant Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sin x \map {\frac \d {\d x} } 1 - 1 \map {\frac \d {\d x} }{\sin x} } {\sin^2 x}\) | Quotient Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {0 - \cos x} {\sin^2 x}\) | Derivative of Sine Function, Derivative of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds -\csc x \cot x\) | Definition of Real Cosecant Function, Definition of Real Cotangent Function |
This is valid only when $\sin x \ne 0$.
$\blacksquare$
Also see
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives