Derivative of Cosine Function/Proof 4
Jump to navigation
Jump to search
Theorem
- $\map {\dfrac \d {\d x} } {\cos x} = -\sin x$
Proof
\(\ds \map {\frac \d {\d x} } {\cos x}\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map \cos {x + h} - \cos x} h\) | Definition of Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map \cos {\paren {x + \frac h 2} + \frac h 2} - \map \cos {\paren {x + \frac h 2} - \frac h 2} } h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {-2 \map \sin {x + \frac h 2} \map \sin {\frac h 2} } h\) | Simpson's Formula for Sine by Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds -\lim_{h \mathop \to 0} \map \sin {x + \frac h 2} \lim_{h \mathop \to 0} \frac {\map \sin {\frac h 2} } {\frac h 2}\) | Multiple Rule for Limits of Real Functions and Product Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sin x \times 1\) | Real Sine Function is Continuous and Limit of $\dfrac {\sin x} x$ at Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sin x\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation: Standard Differential Coefficients